Applying REC Analysis to Ensembles of Sigma-Point Kalman Filters
نویسندگان
چکیده
The Sigma-Point Kalman Filters (SPKF) is a family of filters that achieve very good performance when applied to time series. Currently most researches involving time series forecasting use the Sigma-Point Kalman Filters, however they do not use an ensemble of them, which could achieve a better performance. The REC analysis is a powerful technique for visualization and comparison of regression models. The objective of this work is to advocate the use of REC curves in order to compare the SPKF and ensembles of them and select the best model to be used.
منابع مشابه
Sigma-Point Kalman Filters for Integrated Navigation
Core to integrated navigation systems is the concept of fusing noisy observations from GPS, Inertial Measurement Units (IMU), and other available sensors. The current industry standard and most widely used algorithm for this purpose is the extended Kalman filter (EKF) [6]. The EKF combines the sensor measurements with predictions coming from a model of vehicle motion (either dynamic or kinemati...
متن کاملSigma Point Kalman Filter for Underwater Terrain-based Navigation
Precise underwater navigation is crucial in a number of marine applications. Navigation of most autonomous underwater vehicles (AUVs) is based on inertial navigation. Such navigation systems drift off with time and external fixes are needed. This paper concentrates on one such method, namely terrain based navigation, where position fixes are found by comparing measurements with a prior map. Non...
متن کاملHighly Efficient Sigma Point Filter for Spacecraft Attitude and Rate Estimation
Nonlinearities in spacecraft attitude determination problem has been studied intensively during the past decades. Traditionally, multiplicative extended Kalman filter MEKF algorithm has been a good solution for most nominal space missions. But in recent years, advances in space missions deserve a revisit of the issue. Though there exist a variety of advanced nonlinear filtering algorithms, most...
متن کاملSigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models
Probabilistic inference is the problem of estimating the hidden states of a system in an optimal and consistent fashion given a set of noisy or incomplete observations. The optimal solution to this problem is given by the recursive Bayesian estimation algorithm which recursively updates the posterior density of the system state as new observations arrive online. This posterior density constitut...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006